Exploiting disorder to probe spin and energy hydrodynamics

An outstanding challenge in large-scale quantum platforms is to simultaneously achieve strong interactions, giving rise to the most interesting behaviours, and local addressing, which can probe them. In the context of correlated phases, local addressing allows one to directly probe the nature of the system’s order. At the same time, such addressing allows the study of quantum information spreading and operator growth in out-of-equilibrium scenarios. Here we introduce a technique that enables the measurement of local correlation functions, down to single-site resolution, despite access to only global controls. Our approach leverages the intrinsic disorder present in a solid-state spin ensemble to dephase the non-local components of the correlation function. Utilizing this toolset, we measure both the spin and energy transport in nuclear spin chains. By tuning the interaction Hamiltonian via Floquet engineering, we investigate the cross-over between ballistic and diffusive hydrodynamics. Interestingly, in certain parameter regimes, we observe the coexistence of diffusive spin transport with ballistic energy transport, a hallmark of interacting integrable systems.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

265,23 € per year

only 22,10 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Emergent hydrodynamics in a strongly interacting dipolar spin ensemble

Article 01 September 2021

Correlation holes and slow dynamics induced by fractional statistics in gapped quantum spin liquids

Article Open access 05 March 2021

Spin transport in a tunable Heisenberg model realized with ultracold atoms

Article 16 December 2020

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Halliwell, J. Decoherent histories and the emergent classicality of local densities. Phys. Rev. Lett.83, 2481–2485 (1999). MathSciNetMATHADSGoogle Scholar
  2. Wyatt, R. E. Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics Vol. 28 (Springer Science & Business Media, 2005).
  3. Hartle, J. B. The quasiclassical realms of this quantum universe. Found. Phys.41, 982–1006 (2011). MathSciNetMATHADSGoogle Scholar
  4. Spohn, H. Large Scale Dynamics of Interacting Particles (Springer Science & Business Media, 2012).
  5. Birkhoff, G. in Hydrodynamics (Princeton University Press, 2015).
  6. De Nardis, J., Bernard, D. & Doyon, B. Hydrodynamic diffusion in integrable systems. Phys. Rev. Lett.121, 160603 (2018). MathSciNetGoogle Scholar
  7. Andreev, A., Kivelson, S. A. & Spivak, B. Hydrodynamic description of transport in strongly correlated electron systems. Phys. Rev. Lett.106, 256804 (2011). ADSGoogle Scholar
  8. Žnidarič, M., Scardicchio, A. & Varma, V. K. Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system. Phys. Rev. Lett.117, 040601 (2016). ADSGoogle Scholar
  9. Bertini, B., Collura, M., De Nardis, J. & Fagotti, M. Transport in out-of-equilibrium x x z chains: exact profiles of charges and currents. Phys. Rev. Lett.117, 207201 (2016). ADSGoogle Scholar
  10. Leviatan, E., Pollmann, F., Bardarson, J. H., Huse, D. A. & Altman, E. Quantum thermalization dynamics with matrix-product states. Preprint at arXiv:1702.08894 (2017).
  11. Ye, B., Machado, F., White, C. D., Mong, R. S. & Yao, N. Y. Emergent hydrodynamics in nonequilibrium quantum systems. Phys. Rev. Lett.125, 030601 (2020). ADSGoogle Scholar
  12. Ljubotina, M., Žnidarič, M. & Prosen, T. Kardar-Parisi-Zhang physics in the quantum Heisenberg magnet. Phys. Rev. Lett.122, 210602 (2019). ADSGoogle Scholar
  13. Ye, B., Machado, F., Kemp, J., Hutson, R. B. & Yao, N. Y. Universal Kardar-Parisi-Zhang dynamics in integrable quantum systems. Phys. Rev. Lett.129, 230602 (2022). MathSciNetADSGoogle Scholar
  14. Sommer, A., Ku, M., Roati, G. & Zwierlein, M. W. Universal spin transport in a strongly interacting Fermi gas. Nature472, 201–204 (2011). ADSGoogle Scholar
  15. Moll, P. J., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science351, 1061–1064 (2016). ADSGoogle Scholar
  16. Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun.6, 6400 (2015). ADSGoogle Scholar
  17. Crossno, J. et al. Observation of the dirac fluid and the breakdown of the wiedemann-franz law in graphene. Science351, 1058–1061 (2016). ADSGoogle Scholar
  18. Agarwal, K., Gopalakrishnan, S., Knap, M., Müller, M. & Demler, E. Anomalous diffusion and griffiths effects near the many-body localization transition. Phys. Rev. Lett.114, 160401 (2015). ADSGoogle Scholar
  19. Castro-Alvaredo, O. A., Doyon, B. & Yoshimura, T. Emergent hydrodynamics in integrable quantum systems out of equilibrium. Phys. Rev. X6, 041065 (2016). Google Scholar
  20. Bertini, B. Finite-temperature transport in one-dimensional quantum lattice models. Rev. Mod. Phys.93, 025003 (2021). MathSciNetADSGoogle Scholar
  21. Ilievski, E. & De Nardis, J. Microscopic origin of ideal conductivity in integrable quantum models. Phys. Rev. Lett.119, 020602 (2017). ADSGoogle Scholar
  22. Gopalakrishnan, S. & Vasseur, R. Kinetic theory of spin diffusion and superdiffusion in x x z spin chains. Phys. Rev. Lett.122, 127202 (2019). ADSGoogle Scholar
  23. De Nardis, J., Bernard, D. & Doyon, B. Diffusion in generalized hydrodynamics and quasiparticle scattering. SciPost Phys6, 049 (2019). MathSciNetADSGoogle Scholar
  24. Ilievski, E., De Nardis, J., Gopalakrishnan, S., Vasseur, R. & Ware, B. Superuniversality of superdiffusion. Phys. Rev. X11, 031023 (2021). Google Scholar
  25. De Nardis, J., Gopalakrishnan, S., Vasseur, R. & Ware, B. Stability of superdiffusion in nearly integrable spin chains. Phys. Rev. Lett.127, 057201 (2021). MathSciNetADSGoogle Scholar
  26. Friedman, A. J., Gopalakrishnan, S. & Vasseur, R. Diffusive hydrodynamics from integrability breaking. Phys. Rev. B101, 180302 (2020). ADSGoogle Scholar
  27. Schemmer, M., Bouchoule, I., Doyon, B. & Dubail, J. Generalized hydrodynamics on an atom chip. Phys. Rev. Lett.122, 090601 (2019). ADSGoogle Scholar
  28. Zu, C. et al. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature597, 45–50 (2021). ADSGoogle Scholar
  29. Malvania, N. et al. Generalized hydrodynamics in strongly interacting 1d bose gases. Science373, 1129–1133 (2021). MathSciNetMATHADSGoogle Scholar
  30. Wei, D. et al. Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion. Science376, 716–720 (2022). ADSGoogle Scholar
  31. Joshi, M. K. et al. Observing emergent hydrodynamics in a long-range quantum magnet. Science376, 720–724 (2022). ADSGoogle Scholar
  32. Martin, L. S. et al. Controlling local thermalization dynamics in a Floquet-engineered dipolar ensemble. Preprint at arXiv:2209.09297 (2022).
  33. Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum2, 017003 (2021). Google Scholar
  34. Bakr, W. S., Gillen, J. I., Peng, A., Folling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature462, 74–77 (2009). ADSGoogle Scholar
  35. Zhang, W. & Cory, D. First direct measurement of the spin diffusion rate in a homogenous solid. Phys. Rev. Lett.80, 1324 (1998). ADSGoogle Scholar
  36. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics3, 144–147 (2009). ADSGoogle Scholar
  37. Maurer, P. et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nat. Phys.6, 912–918 (2010). Google Scholar
  38. Chen, E. H., Gaathon, O., Trusheim, M. E. & Englund, D. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds. Nano Lett.13, 2073–2077 (2013). ADSGoogle Scholar
  39. Pfender, M., Aslam, N., Waldherr, G., Neumann, P. & Wrachtrup, J. Single-spin stochastic optical reconstruction microscopy. Proc. Natl Acad. Sci. USA111, 14669–14674 (2014). ADSGoogle Scholar
  40. Arai, K. et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat. Nanotechnol.10, 859–864 (2015). ADSGoogle Scholar
  41. Hunt, G. A. Some theorems concerning brownian motion. Trans. Am. Math. Soc.81, 294–319 (1956). MathSciNetMATHGoogle Scholar
  42. Waugh, J. S., Huber, L. M. & Haeberlen, U. Approach to high-resolution nmr in solids. Phys. Rev. Lett.20, 180–182 (1968). ADSGoogle Scholar
  43. Jeener, J. & Broekaert, P. Nuclear magnetic resonance in solids: thermodynamic effects of a pair of rf pulses. Phys. Rev.157, 232–240 (1967). ADSGoogle Scholar
  44. Haeberlen, U. & Waugh, J. S. Coherent averaging effects in magnetic resonance. Phys. Rev.175, 453–467 (1968). ADSGoogle Scholar
  45. Peng, P. et al. Deep reinforcement learning for quantum hamiltonian engineering. Phys. Rev. Appl.18, 024033 (2022). ADSGoogle Scholar
  46. Grabowski, M. & Mathieu, P. Structure of the conservation laws in quantum integrable spin chains with short range interactions. Ann. Phys.243, 299–371 (1995). MathSciNetMATHADSGoogle Scholar
  47. Zotos, X., Naef, F. & Prelovsek, P. Transport and conservation laws. Phys. Rev. B55, 11029–11032 (1997). ADSGoogle Scholar
  48. Klümper, A. & Johnston, D. Thermodynamics of the spin-1/2 antiferromagnetic uniform Heisenberg chain. Phys. Rev. Lett.84, 4701–4704 (2000). ADSGoogle Scholar
  49. Sakai, K. & Klümper, A. Non-dissipative thermal transport in the massive regimes of the xxz chain. J. Phys. A: Math. Gen.36, 11617–11629 (2003). MathSciNetMATHADSGoogle Scholar
  50. Prosen, T. & Žnidarič, M. Matrix product simulations of non-equilibrium steady states of quantum spin chains. J. Stat. Mech.: Theory Exp.2009, P02035 (2009). Google Scholar
  51. Steinigeweg, R. & Gemmer, J. Density dynamics in translationally invariant spin-1 2 chains at high temperatures: a current-autocorrelation approach to finite time and length scales. Phys. Rev. B80, 184402 (2009). ADSGoogle Scholar
  52. Žnidarič, M. Spin transport in a one-dimensional anisotropic Heisenberg model. Phys. Rev. Lett.106, 220601 (2011). ADSGoogle Scholar
  53. Karrasch, C., Moore, J. & Heidrich-Meisner, F. Real-time and real-space spin and energy dynamics in one-dimensional spin-1 2 systems induced by local quantum quenches at finite temperatures. Phys. Rev. B89, 075139 (2014). ADSGoogle Scholar
  54. Lucioni, E. et al. Observation of subdiffusion in a disordered interacting system. Phys. Rev. Lett.106, 230403 (2011). ADSGoogle Scholar
  55. Vosk, R., Huse, D. A. & Altman, E. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X5, 031032 (2015). Google Scholar
  56. Potter, A. C., Vasseur, R. & Parameswaran, S. Universal properties of many-body delocalization transitions. Phys. Rev. X5, 031033 (2015). Google Scholar
  57. Sahay, R., Machado, F., Ye, B., Laumann, C. R. & Yao, N. Y. Emergent ergodicity at the transition between many-body localized phases. Phys. Rev. Lett.126, 100604 (2021). ADSGoogle Scholar
  58. Zaburdaev, V., Denisov, S. & Klafter, J. Lévy walks. Rev. Mod. Phys.87, 483–530 (2015). ADSGoogle Scholar
  59. Nahum, A., Vijay, S. & Haah, J. Operator spreading in random unitary circuits. Phys. Rev. X8, 021014 (2018). Google Scholar
  60. Von Keyserlingk, C., Rakovszky, T., Pollmann, F. & Sondhi, S. L. Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws. Phys. Rev. X8, 021013 (2018). Google Scholar
  61. Rakovszky, T. & Pollmann, F. & Von Keyserlingk, C. Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation. Phys. Rev. X8, 031058 (2018). Google Scholar
  62. Khemani, V., Vishwanath, A. & Huse, D. A. Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws. Phys. Rev. X8, 031057 (2018). Google Scholar
  63. Xu, S. & Swingle, B. Accessing scrambling using matrix product operators. Nat. Phys.16, 199–204 (2020). Google Scholar
  64. Xu, S. & Swingle, B. Locality, quantum fluctuations, and scrambling. Phys. Rev. X9, 031048 (2019). Google Scholar
  65. Sahu, S., Xu, S. & Swingle, B. Scrambling dynamics across a thermalization-localization quantum phase transition. Phys. Rev. Lett.123, 165902 (2019). ADSGoogle Scholar
  66. Schuster, T. et al. Many-body quantum teleportation via operator spreading in the traversable wormhole protocol. Phys. Rev. X12, 031013 (2022). Google Scholar
  67. Li, J. et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X7, 031011 (2017). ADSGoogle Scholar
  68. Landsman, K. A. et al. Verified quantum information scrambling. Nature567, 61–65 (2019). ADSGoogle Scholar
  69. Blok, M. S. et al. Quantum information scrambling on a superconducting qutrit processor. Phys. Rev. X11, 021010 (2021). Google Scholar
  70. Wei, K. X. et al. Emergent prethermalization signatures in out-of-time ordered correlations. Phys. Rev. Lett.123, 090605 (2019). ADSGoogle Scholar
  71. Cappellaro, P., Ramanathan, C. & Cory, D. G. Simulations of information transport in spin chains. Phys. Rev. Lett.99, 250506 (2007). ADSGoogle Scholar
  72. Cappellaro, P., Viola, L. & Ramanathan, C. Coherent-state transfer via highly mixed quantum spin chains. Phys. Rev. A83, 032304 (2011). ADSGoogle Scholar
  73. Ramanathan, C., Cappellaro, P., Viola, L. & Cory, D. G. Experimental characterization of coherent magnetization transport in a one-dimensional spin system. New J. Phys.13, 103015 (2011). ADSGoogle Scholar
  74. Rufeil-Fiori, E., Sánchez, C. M., Oliva, F. Y., Pastawski, H. M. & Levstein, P. R. Effective one-body dynamics in multiple-quantum nmr experiments. Phys. Rev. A79, 032324 (2009). ADSGoogle Scholar
  75. Zhang, W. et al. NMR multiple quantum coherences in quasi-one-dimensional spin systems: comparison with ideal spin-chain dynamics. Phys. Rev. A80, 052323 (2009). ADSGoogle Scholar
  76. Comodi, P., Liu, Y., Zanazzi, P. & Montagnoli, M. Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal x-ray diffraction investigation. Phys. Chem. Miner.28, 219–224 (2001). ADSGoogle Scholar

Acknowledgements

We thank C. Ramanathan, H. Zhou, M. Leigh, N. Leitao, F. Machado, J. Kemp, J. Moore and M. Lukin for helpful conversations. This work was supported in part by the National Science Foundation under grant No. PHY1915218. P.P. thanks MathWorks for their support in the form of a Graduate Student Fellowship. The opinions and views expressed in this publication are from the authors and not necessarily from MathWorks. B.Y. acknowledges support from the Army Research Office through the MURI program (W911NF-20-1-0136). N.Y.Y. acknowledges support from the NSF through the QLCI program (OMA-2016245) and the David and Lucile Packard foundation.

Author information

  1. These authors contributed equally: Pai Peng, Bingtian Ye.

Authors and Affiliations

  1. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA Pai Peng
  2. Department of Physics, University of California, Berkeley, CA, USA Bingtian Ye & Norman Y. Yao
  3. Department of Physics, Harvard University, Cambridge, MA, USA Bingtian Ye & Norman Y. Yao
  4. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Paola Cappellaro
  5. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA Paola Cappellaro
  1. Pai Peng